Abstract

Recent years have witnessed significant advances in biobased epoxy resins to replace their petroleum-based counterparts, especially diglycidyl ether of bisphenol A type epoxy resin (DGEBA). However, for meeting a great variety of the requirements, long-standing challenges include environmentally friendly preparation of epoxy resin with few toxic byproducts and improving their properties. Herein, we report a facile method to synthesize new silicone-bridged difunctional epoxy monomers in high yield. They are derived from naturally occurring eugenol by introducing the methylsiloxane and phenylsiloxane linkers of different chain lengths into their molecular backbones. These synthesized liquid epoxy monomers have definitive molecular structure with high purity. These silicone-bridged difunctional epoxy monomers exhibit much lower viscosity (<2.5 Pa s) than commercial DGEBA epoxy (10.7 Pa s) suitable for composites and prepregs. After curing, they exhibit a dielectric permittivity as low as 2.8 and good intrins...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.