Abstract
A novel-biobased latex was synthesized by redox-initiated emulsion copolymerization of ethoxy dihydroeugenyl methacrylate with 5 wt % of a photosensitive methacrylate containing a coumarin group. A stable copolymer latex having 16 wt % solids content and a particle size of 53 nm was obtained. The copolymer had a T g of 29 °C and was soluble in acetone. Coatings were obtained, and the effect of UVA irradiation was tested: the light-induced cross-linking of the copolymer by [2 + 2] cycloaddition of the coumarin pendant moieties was demonstrated by UV-visible spectroscopy. As a consequence of UVA-induced cross-linking, the copolymer became insoluble in acetone. The copolymer latex was combined with hemp-derived nanocellulose to obtain composite self-standing films by simple mixing in an aqueous medium followed by casting, evaporation of water, and hot pressing. The composite films were also successfully cross-linked by [2 + 2] cycloaddition, with an enhancement of barrier properties. The water vapor transmission rate of the cross-linked composite films with up to 45 wt % nanocellulose was 5 times lower than that of the hemp nanocellulose film, while further addition of nanocellulose increased permeability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.