Abstract

A novel class of polymer blends has been prepared from main-chain-type benzoxazine polymer (MCBP) and chitosan (CTS), a modified biomacromolecule. A water-soluble, main-chain-type benzoxazine polymer, MCBP(BA-tepa), was synthesized from the reaction of bisphenol A (BA), tetraethylenepentamine (TEPA) and formalin. The structure of the MCBP(BA-tepa) was confirmed by proton nuclear magnetic resonance spectroscopy ((1)H NMR) and Fourier transform infrared spectroscopy (FT-IR). The polymer blends were prepared by mixing MCBP(BA-tepa) and CTS in aqueous acetic acid solution (1%). The CTS/MCBP(BA-tepa) films are cross-linked by thermal treatment via the ring-opening polymerization of benzoxazine structures in the main chain to produce an AB-cross-linked network. Differential scanning calorimetry (DSC) and FT-IR were used to study the effects of CTS on the polymerization behavior of benzoxazine. Hydrogen bonding between polybenzoxazine and CTS structures was also observed. The mechanical and thermal properties of cross-linked CTS/MCBP(BA-tepa) films were evaluated, and the results showed unusual levels of synergism. In particular, the tensile strength and thermal stability were significantly enhanced in a nonlinear fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.