Abstract

Highly efficient adsorbents are needed to remove uremic toxins and reduce the economic and societal burden of the current dialysis treatments in resource-limited environments. In this study, nanostructured porous carbon nanofibers with nitrogen-doped zeolites (NZ-PCNF) were prepared, by electrospinning zeolites with chitosan-poly(ethylene oxide) blends, followed by a one-step carbonization process, without further activation steps or aggressive chemical additives for N-doping. The results showed that N-zeolites were successfully integrated into an ultrafine carbon nanofiber network, with a uniform nanofiber diameter of approximately 25 nm, hierarchical porous structure (micro- and mesopores), and high specific surface area (639.29 m2/g), facilitating uremic toxin diffusion and adsorption. The self-N-doped structure in the NZ-PCNF removed more creatinine (∼1.8 times) than the porous carbon nanofibers when using the same weight of precursor materials. Cytotoxicity and hemolysis tests were performed to verify the safety of NZ-PCNF. This study provides a novel strategy for transforming chitosan-based materials into state-of-the-art porous carbon nanofiber/zeolite self-N-doped composites, affording an efficient bioderived adsorbent for the removal of uremic toxins in patients with chronic kidney disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.