Abstract

Food preservation is crucial in safeguarding the global food supply and security. Current regulations do not encourage the use of chemical food preservatives. Therefore, creating a physical barrier in the form of packaging remains a necessary measure to prevent food contact with biological and physical contaminants. This work presents a novel biodegradable thin trilayer assembly of two sandwiching layers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and a core layer composed of thermoplastic starch (TPS), maleated TPS, or their blends with PHBV (80/20). Scanning electron microscope (SEM), and optical microscopy images showed the samples' consistent film formation. The tensile test revealed that the sample with a core layer of a blend of maleated TPS and PHBV was the strongest, with a modulus of 178 MPa. The water vapor transmission rates were as low as 20.2 g/(m2·d). The oxygen permeation rate was below the detection limit of the test. Most importantly, the samples pass the biodegradation (28 °C) disintegration test in less than six weeks. The study confirmed that a trilayer structure with two outer layers of PHBV, and a middle layer of TPS-PHBV blend provides excellent barrier properties in conjuncture with its biodegradability making it an appealing, sustainable food packaging material option.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call