Abstract

PurposeThe aim of the present study was to develop a standard operating procedure (SOP) for the collection, transport, and storage of human cumulus cells, follicular fluid, blood serum, seminal plasma, embryo culture supernatant, and embryo culture supernatant control obtained within the IVF process under approved protocols and written informed consent from participating patients. The SOP was developed at the Kinderwunsch Institut Schenk, Dobl, Austria, together with Biobank Graz of the Medical University of Graz, Austria.MethodsThe SOP provides comprehensive details of laboratory procedures and sampling of the different fluids within the IVF process. Furthermore, information on sample coding, references of involved laboratory techniques (e.g., oocyte retrieval with a Steiner-TAN needle), ethical approvals, and biobanking procedures are presented.ResultsThe result of the present study is a standard operating procedure.ConclusionsThe SOP ensures a professional way for collection and scientific use of IVF samples by the Kinderwunsch Institut Schenk, Dobl, Austria, and Biobank Graz of the Medical University of Graz, Austria. It can be used as a template for other institutions to unify specimen collection procedures in the field of reproductive health research.

Highlights

  • Infertility is a global phenomenon, affecting an estimated 48.5 million of reproductive-aged couples worldwide in 2010

  • Institut Schenk, Dobl, Austria, and Biobank Graz of the Medical University of Graz, Austria. It can be used as a template for other institutions to unify specimen collection procedures in the field of reproductive health research

  • This persisting problem of infertility explains the ever increasing number of people receiving care in terms of in vitro fertilization (IVF), the assisted reproductive technique (ART), which is existing for almost 40 years [2]

Read more

Summary

Introduction

Infertility is a global phenomenon, affecting an estimated 48.5 million of reproductive-aged couples worldwide in 2010. The overall burden of infertility has remained similar in estimated levels and trends according to a WHO study published in 2012 [1]. This persisting problem of infertility explains the ever increasing number of people receiving care in terms of in vitro fertilization (IVF), the assisted reproductive technique (ART), which is existing for almost 40 years [2]. What is known so far is that success in the IVF treatment depends on a complex interplay of reproductive medicine and clinical embryology. Changes in stimulation protocols were thought to optimize the therapeutic outcome; clinical pregnancy rates or baby take home rates did not increase as expected [3]. Improving the process of IVF by different research approaches is tightly linked to state-of-the-art methods of sampling, transporting, and storing of biological materials

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call