Abstract

AbstractPrimary production and heterotrophic bacterial activity in the Antarctic Ocean are generally low during the austral winter. Organic carbon is considered to be a major factor limiting bacterial metabolism, but few studies have investigated the bioavailability of organic matter during winter. Herein, the chemical composition and bioavailability of dissolved organic matter (DOM) were investigated in surface (5–100 m) and mesopelagic (200–750 m) waters off the northwestern Antarctic Peninsula during August 2012. Concentrations of dissolved organic carbon (DOC) were low (42 ± 4 µmol L−1) and showed no apparent spatial patterns. By contrast, the composition of DOM exhibited significant spatial trends that reflected varying ecosystem productivity and water masses. Surface distributions of chlorophyll‐a and particulate organic carbon depicted a southward decline in primary productivity from open waters (60.0°S–61.5°S) to ice‐covered regions (61.5°S–62.5°S). This trend was evident from concentrations and DOC‐normalized yields of dissolved amino acids in the surface waters, indicating decreasing DOM bioavailability with increasing latitude. A different pattern of DOM bioavailability was observed in the mesopelagic water masses, where amino acids indicated highly altered DOM in the Circumpolar Deep Water and bioavailable DOM in the Transitional Weddell Water. Depth distributions of amino acid yields and compositions revealed hot spots of elevated bioavailable DOM at ∼75 m relative to surrounding waters at most ice‐free stations. Relatively low mole percentages of bacterially derived d‐amino acids in hot spots were consistent with an algal source of bioavailable DOM. Overall, these results reveal the occurrence and spatial heterogeneity of bioavailable substrates in Antarctic waters during winter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.