Abstract

The bioavailability of selenium (Se) was determined in bacterial strains that reduce selenite to red elemental Se (SeO). A laboratory strain of Bacillus subtilis and a bacterial rod isolated from soil in the vicinity of the Kesterson Reservoir, San Joaquin Valley, CA, (Microbacterium arborescens) were cultured in the presence of 1 mM sodium selenite (Na2SeO3). After harvest, the washed, lyophilized B. Subtilis and M. arborescens samples contained 2.62 and 4.23% total Se, respectively, which was shown to consist, within error, entirely of SeO. These preparations were fed to chicks as supplements to a low-Se, vitamin E-free diet. Three experiments showed that the Se in both bacteria had bioavailabilities of approx 2% that of selenite. A fourth experiment revealed that gray SeO had a bioavailability of 2% of selenite, but that the bioavailability of red SeO depended on the way it was prepared (by reduction of selenite). When glutathione was the reductant, bioavailability resembled that of gray SeO and bacterial Se; when ascorbate was the reductant, bioavailability was twice that level (3-4%). These findings suggest that aerobic bacteria such as B. subtilis and M. arborescens may be useful for the bioremediation of Se-contaminated sites, i.e., by converting selenite to a form of Se with very low bioavailability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.