Abstract

Human milk-protein-derived peptides exhibit an array of bioactivities. Certain bioactivities cannot be exerted unless the peptides are absorbed across the gastrointestinal lumen into the bloodstream. The purpose of study was to determine which peptides derived from in vitro digestion of human milk could cross human intestinal Caco-2 cell monolayers. Our results showed that the numbers of peptides absorbed by the Caco-2 cell monolayer were different at different concentrations (44 peptides out of 169 peptides detected at 10 μg/mL, 124 peptides out of 204 peptides detected at 100 μg/mL, and 175 peptides out of 236 peptides detected at 1000 μg/mL). Four peptides (NLHLPLP (β-casein [138-144]), PLAPVHNPI (β-casein [216-224]), PLMQQVPQPIPQ (β-casein [148-159]), and FDPQIPK (β-casein [126-132])) crossed to the basolateral chamber of the Caco-2 monolayer incubated with peptides at all three concentrations. Among the peptides identified in the basolateral chambers, three peptides (NLHLPLP (β-casein [138-144]), LENLHLPLP (β-casein [136-144]), and QVVPYPQ (β-casein [182-188])) are known ACE-inhibitors; one peptide (LLNQELLLNPTHQIYPV (β-casein [197-213])) is antimicrobial, and another peptide (QVVPYPQ (β-casein [182-188])) has antioxidant activity. These findings indicate that specific milk peptides may be able to reach the bloodstream and exert bioactivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call