Abstract

'The purpose of this study is to determine the bioavailability of organic solvents following dermal exposures to contaminated soil and water. Breath analysis is being used to obtain real-time measurements of volatile organics in expired air following exposure in rats and humans. Rhesus monkeys will be used as surrogates for humans in benzene exposures. The exhaled breath data is being analyzed using physiologically based pharmacokinetic (PBPK) models to determine the dermal bioavailability of organic solvents under realistic exposure conditions. The end product of this research will be a tested framework for the rapid screening of real and potential exposures while simultaneously developing physiologically based pharmacokinetic (PBPK) models to comprehensively evaluate and compare exposures to organics from either contaminated soil or water. This report summarizes work 7 months into a 3-year project. Method development has produced systems for solvent exposure from soil and water which mimic actual exposure, and for which animals and human volunteers can be safely tested. Soil exposure is generally open to the air (working the soil) while water exposure is generally immersion. For 6--8 hour test exposure, a patch has been developed where soil is contained against the skin by a non-occlusive membrane, while simultaneously allowing volatilization of test solvent to the environment (activated charcoal). The water counterpart is an occlusive glass culture dish, sealed to skin with silicone adhesive. Shorter term exposure is done by one hand immersion in a bucket containing circulating water or soil, the volunteer instructed to move fingers through the water or soil. Human volunteers and animals breathe fresh air via a new breath-inlet system that allows for continuous real-time analysis of undiluted exhaled air. The air supply system is self-contained and separated from the exposure solvent-laden environment. The system uses a Teledyne 3DQ Discovery ion trap mass spectrometer (MS/MS) equipped with an atmospheric sampling glow discharge ionization source (ASGDI). The MS/MS system provides an appraisal of individual chemical components in the breath stream in the single-digit parts-per-billion (ppb) detectable range for each of the compounds proposed for study, while maintaining linearity of response over a wide dynamic range.'

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.