Abstract

Enzymatic hydrolysis and mineralization of organic phosphorus (P) were determined in surface water samples collected from inflow and outflow of a submerged aquatic vegetation (SAV)-dominated treatment wetland of the Florida Everglades. Water samples were fractionated into three size fractions (> 0.4 micron, < 0.4 to > 0.05 micron, and < 0.05 micron) with a sequential flow filtration technique. The fractionated water samples were incubated to hydrolyze with alkaline phosphatase (APase) and phosphodiesterase (PDEase), and to mineralize at different redox and pH. Unlike APase, which hydrolyzed < or = 10% of organic P, PDEase hydrolyzed > or = 71% of organic P in unfiltered water from both inflow and outflow waters, suggesting the domination of bioavailable diester P in the water. Phosphodiesterase completely hydrolyzed organic P in the < 0.4- to > 0.05-micron and < 0.05-micron fractions, as compared with < or = 35% in the > 0.4-micron fraction. However, the P mineralization in inflow and outflow waters at different redox and pH showed that P associated with particulate > 0.4 micron had been mineralized the most. Phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy showed that surficial sediments from the inflow region contained a high proportion of polynucleotides, nucleoside monophosphates, and previously unreported glycerophosphoethanolamine and phosphoenolpyruvates. However, at the outflow, the relative proportion of polynucleotides and nucleoside monophosphates was reduced substantially. This suggests that the SAV wetland may sequester P via accretion of organic matter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call