Abstract

Few studies have been conducted examining the distribution of different-sized particles in sediment and its potential impact on bioavailability of sediment-associated contaminants. In the current study, three sediments composed of different particle sizes, i.e., fine (0-180 μm), combined (0-500 μm), and coarse (180-500 μm), were used to evaluate the bioaccumulation potential and toxicokinetic rates of four hydrophobic organic contaminants (HOCs) including two polychlorinated biphenyls (PCB-101 and PCB-118), a metabolite of an organochlorine insecticide (p,p'-DDE), and a polybrominated diphenyl ether (BDE-47) to the benthic oligochaete Lumbriculus variegatus. Two chemical approaches, Tenax extraction and matrix-solid phase microextraction (SPME), were also used to measure bioavailability of the sediment-associated HOCs. The uptake and elimination rates of HOCs by L. variegatus from coarse sediment were greater than those from fine sediment, although the biota-sediment accumulation factors (BSAFs) were not significantly different among sediments with different particle sizes. The freely dissolved HOC concentrations measured by matrix-SPME were greater in coarse sediment, however, no difference was found in uptake and desorption rates for the matrix-SPME and Tenax extraction measurements. Although BSAFs in L. variegatus were the same among sediments, kinetic rates of HOCs for organisms and freely dissolved HOC concentrations were lower in fine sediment, suggesting that sediment ingestion may also play a role in organism uptake, especially for HOCs in fine sediment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.