Abstract

Bioavailability of calcium (Ca) from oyster shell electrolysate (Active Absorbable Ca: AACa) and DL-Ca lactate in rats was investigated. Plasma Ca metabolism, bone mineral density and vitamin D-deficient rats were measured and compared each other. Vitamin D-deficient rats were fedad libitum a vitamin D-free diet containing 0.44 % Ca or 1.20 % Ca adjusted with either AACa or DL-Ca lactate with or without oral supplementation of physiological dose (10 IU/rat/day) of vitamin D3 for 28 days. During and after feeding, concentrations of Ca, phosphorus, parathyroid hormone (PTH), 25-hydroxyvitamin D3 (25-OH-D3), 1α, 25-dihydroxyvitamin D3 [1, 25(OH)2D3] and alkaline phosphatase (Alp) activity in plasma were measured. Furthermore, femoral Ca and phosphorus contents, mineral density and mechanical strength were also measured. Despite of the differences of contents and chemical forms of Ca in diets, all the groups showed prompt and complete recoveries in both Ca and vitamin D malnutritions under vitamin D-replete condition and there was no significant difference among all the groups in increases of body weight gains and plasma Ca levels, and in decreases of plasma PTH level and Alp activity. In contrast, the groups fed the same diets under vitamin D-deficient condition showed no significant recoveries in both plasma Ca metabolism and bone mineralization although Ca bioavailability of AACa appeared to be slightly better than that of DL-Ca lactate. These results suggest that bioavailability of Ca from AACa and DL-Ca lactate are substantially equal in increasing plasma Ca levels, bone mineral density and mechanical strength in both vitamin D-replete and vitamin D-deficient rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call