Abstract

Oral mucosa offers several advantages in the delivery of therapeutic molecules. It avoids presystemic metabolism, Nanoencapsulation techniques might be applied to conquer physical, chemical challenges and enhance drug penetration, formulation performance, prolonging drug residence time, and improving sensorial feeling. The present investigation is aimed to formulate liposomal pastilles with high bioavailability. Voriconazole Liposomes (VL) were produced by utilizing varied ratios of soya lecithin (SL) and cholesterol (CH) by solvent Injection method. RSM is utilized to identify the optimized formulation, as this design provides a thorough understanding of a process and also has great utilization in originating the robustness of the product. The main impact and interaction terms of the formulation variables were assessed quantitatively utilizing a mathematical-statistical approach indicating that both independent variables have significant (‘P’ value < 0.05) effects on particle size (‘P’ value: 0.0142), percentage entrapment efficiency (‘P’ value: 0.0120), percentage drug release through the dialysis membrane (‘P’ value: 0.0105), percentage drug release through porcine buccal mucosa (‘P’ value: 0.0171) and percentage zone of inhibition (‘P’ value: 0.0305). Optimal liposomal encapsulated in noticed in 15:10 lecithin: cholesterol concentration (VLP-6). Higher Lecithin and Cholesterol quantity in the liposome formulations resulted in lower drug entrapment efficiency and drug release when compared with middle levels of lecithin and cholesterol content formulation. The pastilles were prepared from the optimized liposomal formulation with a modified method reported in British Pharmaceutical Codex, 1907. These liposomal pastilles were subjected to evaluation of physicochemical parameters, In vitro drug release studies, stability studies, and In vivo bioavailability studies in comparison with pure voriconazole pastilles (PVP). The statistical data analysis results indicated that there was a significant difference in T max, K a, t 1/2 abs, t 1/2 elim, AUC0–24, AUC0-∞, AUMC0–24 and AUMC0-∞, values among PVP and VLP-6. There was no significant difference in C max, K el, MRT0–24 and MRT0-∞values among pure voriconazole pastilles and optimized liposomal formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.