Abstract

Sildenafil citrate (SIL) as a first-line treatment for erectile dysfunction is currently reported to have poor solubility and bioavailability. Moreover, SIL undergoes first-pass metabolism when taken orally and its injection can lead to discomfort. In this study, we introduce a novel transdermal delivery system that integrates hydrogel-forming microneedles with the inclusion complex tablet reservoir. The hydrogel-forming microneedle was prepared from a mixture of polymers and crosslinkers through a crosslinking process. Importantly, the formulations showed high swelling capacity (>400 %) and exhibited adequate mechanical and penetration properties (needle height reduction < 10 %), penetrating up to five layers of Parafilm® M (assessed to reach the dermis layer). Furthermore, to improve the solubility of SIL in the reservoir, the SIL was pre-complexed with β-cyclodextrin. Molecular docking analysis showed that SIL was successfully encapsulated into the β-cyclodextrin cavity and was the most suitable conformation compared to other CD derivatives. Moreover, to maximize SIL delivery, sodium starch glycolate was also added to the reservoir formulation. As a proof of concept, in vivo studies demonstrated the effectiveness of this concept, resulting in a significant increase in AUC (area under the curve) compared to that obtained after administration of pure SIL oral suspension, inclusion complex, and Viagra® with relative bioavailability > 100 %. Therefore, the approach developed in this study could potentially increase the efficacy of SIL in treating erectile dysfunction by being non-invasive, safe, avoiding first-pass metabolism, and increasing drug bioavailability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.