Abstract

Traditional extraction methods (soil solution and solvent extraction) are simple to use and conventionally employed to assess pesticide chemical form and bioavailability in soils. However, whilst convenient for regulatory testing, it has been suggested that these approaches may be too crude or are poor predictors of bioavailability, due to their arbitrary original development to detect ‘total’ concentration using exhaustive extraction. The diffusive gradients in thin films (DGT) technique has been widely used to measure chemical speciation in situ and shown to reliably predict bioavailability of a range of contaminants (e.g. heavy metals, radionuclides, nutrients) in soil systems, because it dynamically samples contaminants from/re-supplied to the soil solution phase. Experiments were therefore conducted with 5 soils of different properties to compare DGT and the two conventional extraction approaches for sampling atrazine (ATR) and its metabolites from soils and for predicting their uptake by maize tissues. After 23 days aging, a large proportion of total ATR was still available for solvent (acetonitrile) extraction and the major constituent in soils was parent ATR. The best correlations of total ATR concentrations in maize and total ATR measured in soil were with DGT and soil solution measurements. This is encouraging, in jointly supporting one of the established methodologies traditionally used in pesticide testing (i.e. soil solution) and a widely used method (i.e. DGT), which has been validated previously for a range of contaminants. The poorer performance of solvent extraction (a procedure widely used for pesticide testing) is perhaps to be expected, given that solvents will not truly mimic the conditions encountered in soil-plant systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.