Abstract
Elevated nutrient concentrations in agricultural runoff contribute to seasonal eutrophication and hypoxia in the lower portion of the San Joaquin River, California. Interception and filtration of agricultural runoff by constructed wetlands may improve water quality of return flows ultimately destined for major water bodies. This study evaluated the efficacy of two small flow-through wetlands (2.3 and 7.3 ha; hydraulic residence time = 11 and 31 h) for attenuating various forms of P from irrigation tailwaters during the 2005 irrigation season (May to September). Our goal was to examine transformations and removal efficiencies for bioavailable P in constructed wetlands. Inflow and outflow water volumes were monitored continuously and weekly water samples were collected to measure total P (TP), dissolved-reactive P (DRP), and bioavailable P (BAP). Suspended sediment was characterized and fractionated into five operationally-defined P fractions (i.e., NH4Cl, bicarbonate-dithionite, NaOH, HCl, residual) to evaluate particulate P (PP) transformations. DRP was the major source of BAP with the particulate fraction contributing from 11 to 26%. On a seasonal basis, wetlands removed 55 to 65% of PP, 61 to 63% of DRP, 57 to 62% of BAP, and 88 to 91% of TSS. Sequential fractionation indicated that the bioavailable fraction of PP was largely associated with clay-sized particles that remain in suspension, while less labile P forms preferentially settle with coarser sediment. Thus, removal of potentially bioavailable PP is dependent on factors that promote particle settling and allow for the removal of colloids. This study suggests that treatment of tailwaters in small, flow-through wetlands can effectively remove BAP. Wetland design and management strategies that enhance sedimentation of colloids can improve BAP retention efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.