Abstract

A pyrene-degrading consortium OPK containing Mycolicibacterium strains PO1 and PO2, Novosphingobium pentaromativorans PY1 and Bacillus subtilis FW1 effectively biodegraded medium- and long-chain alkanes as well as mixed hydrocarbons in crude oil. The detection of alkB and CYP153 genes in the genome of OPK members supports its phenotypic ability to effectively degrade a broad range of saturated hydrocarbons in crude oil. Zeolite-immobilized OPK was developed as a ready-to-use bioproduct and it exhibited 74% removal of 1000 mg L−1 crude oil within 96 h in sterilized seawater without nutrient supplementation and maintained high crude oil-removal activity under a broad range of pH values (5.0–9.0), temperatures (30–40 °C) and salinities (20–60‰). In addition, the immobilized OPK retained a high crude oil removal efficacy in semicontinuous experiments and showed reusability for at least 5 cycles. Remarkably, bioaugmentation with zeolite-immobilized OPK in sandy soil microcosms significantly increased crude oil (10,000 mg kg−1 soil) removal from 45% to 80.67% within 21 days compared to biostimulation and natural attenuation. Moreover, bioaugmentation with exogenous immobilized OPK stimulated an increase in the relative abundances of Alcanivorax genus, indigenous hydrocarbon-degrading bacteria, which in turn enhanced removal efficiency of crude oil contamination from sandy soil microcosms. The results indicate positive interactions between the bioaugmented immobilized consortium, harboring Mycolicibacterium as a key player, and indigenous Alcanivorax, which exhibited crucial functions for improving crude oil removal efficacy. The knowledge obtained forms an important basis for further synthesis and handling of a promising bio-based product for enhancing the in situ bioremediation of crude oil-polluted marine environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call