Abstract
Treatability studies in real contaminated soils are essential to predict the feasibility of microbial consortium augmentation for field-scale bioremediation of contaminated sites. In this study, the biodegradation of a mixture of seven PAHs in a manufactured gas plant (MGP) soil contaminated with 3967 mg kg−1 of total PAHs using novel acid-, metal-tolerant, N-fixing, P-solubilizing, and biosurfactant-producing LMW and HMW PAH-degrading bacterial combinations as inoculums was compared in slurry- and solid-phase microcosms over natural attenuation. Bioaugmentation of 5 % of bacterial consortia A and N in slurry- and solid-phase systems enhanced 4.6–5.7 and 9.3–10.7 % of total PAH degradation, respectively, over natural attenuation. Occurrence of 62.7–88 % of PAH biodegradation during natural attenuation in soil and slurry illustrated the accelerated rate of intrinsic metabolic activity of the autochthonous microbial community in the selected MGP soil. Monitoring of the total microbial activity and population of PAH degraders revealed that the observed biodegradation trend in MGP soil resulted from microbial mineralization. In the slurry, higher biodegradation rate constant (k) and lower half-life values (t 1/2) was observed during bioaugmentation with consortium N, highlighting the use of bioaugmentation in bioslurries/bioreactor to achieve rapid and efficient bioremediation compared to that of a static solid system. In general, natural attenuation was on par with bioaugmentation. Hence, depending on the type of soil, natural attenuation might outweigh bioaugmentation and a careful investigation using laboratory treatability studies are highly recommended before the upscale of a developed bioremediation strategy to field level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.