Abstract

—Bioaugmentation, i.e., increasing the abundance of certain microorganisms in the community by adding appropriate cells or establishing the conditions promoting their growth, is widely used in environmental technologies. Its application for launching of the anammox reactors is usually limited to introduction of anammox bacteria. We expected addition of nitrifiers during anammox bioreactor launching to stimulate the anammox process due to rapid production of nitrite, which anammox bacteria use for ammonium oxidation. The present work investigated the effect of introduction of a nitrifying community on the composition and activity of the microbial community in an anammox reactor. At the time of inoculation of a laboratory SBR reactor, an active nitrifying community (5 days old) (ASB) (bioaugmenting activated sludge, ASB) containing group I nitrifiers, primarily Nitrosospira, was added (1 : 100 by biomass) to anammox activated sludge (ASA) stored for 1 month at 4°C and exhibiting low metabolic activity. The use of ASB resulted in increased efficiency of nitrogen removal. While noticeable nitrogen removal in the control (7%) was observed since day 11 of incubation, nitrogen removal in the experimental reactor began on day 4 at the level of 20%. Nitrogen removal after 30 days of incubation was ~60% in the experiment and 20% in the control. The rate of ammonium oxidation in the presence of ASB increased due to activity of nitrifying bacteria (during the first 10 days of operation) and anammox bacteria of the genus Brоcadia, which were already present in ASA (throughout all period of operation). Activity of group II nitrifiers (genera Nitrobacter and Nitrococcus), which were present in ASB, prevented accumulation of nitrite, which in high concentrations is toxic to both nitrifiers and anammox bacteria. High activity of the Nitrosospira nitrifiers introduced with ASB probably provided the anammox bacteria with one of the substrates (nitrite), promoting their rapid growth. During subsequent operation of the reactor, nitrifiers of the genus Nitrosomonas from the initial ASA community were mainly responsible for growth of the anammox bacteria. Thus, ASA bioaugmentation at the loading of the anammox reactor by active nitrifiers resulted in significantly improved efficiency of ammonium removal via the anammox process and accelerated transition of the reactor to the working mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call