Abstract

Effluent from the rubber industry contains 2-mercaptobenzothiazole (2-MBT) as the major persistent pollutant. To remove 2-MBT, this study investigated the bioaugmentation of activated sludge with a 2-MBT-degrading bacterial consortium, which was previously enriched from rubber wastewater sludge. The consortium was immobilized in a commercial porous carrier to increase its efficiency and stability. The 16S rRNA gene analysis showed that the dominant Pseudomonas spp. and Stenotrophomonas spp. were maintained when it was repeatedly used for 4 cycles in a minimal medium containing 300 mg L−1 2-MBT. For bioaugmentation, a stirred tank reactor containing the immobilized consortium and activated sludge at a 1:2 mass ratio was constructed and found to remove 88.2 % of 100 mg L−1 2-MBT from synthetic wastewater. When the rubber industrial wastewater was applied at an organic loading rate (OLR) range of 1.0–3.0 kg COD m−3 d−1, the bioaugmentation reactor had 2-MBT and COD removal efficiencies of 70–79 % and 83–96 %, respectively. The reactors with either immobilized consortium or activated sludge alone had lower treatment efficiency. The bacterial community and its predicted functions corresponded to the activity of the added consortium and the operation of the reactor. Consequently, bioaugmentation should be applied to activated sludge for the treatment of rubber wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.