Abstract

The consortium of aerobic bacterial strains Rhodococcus ruber P25 and Microbacterium sp. B51 was bioaugmented in natural and industrial soils, contaminated by commercial mixture of polychlorinated biphenyls (PCBs) Sovol. The results showed that the bioaugmentation of bacterial strains led to PCBs degradation in soil. Sovol at the initial concentration of about 100mgkg−1 was removed by 72.2% in the bioaugmented system with natural soil within 90 days, while the system with industrial soil removed 96.4% of this compound within the same period. The biodegradation kinetics of PCBs in the bioaugmented soil systems was not dependent on the presence of indigenous microflora. It was found that the growth dynamics of the strains R. ruber P25 and Microbacterium sp. B51 correlated with the specific degradation of Sovol. The strains R. ruber P25 and Microbacterium sp. B51 displayed high degradative activity to all congeners (ortho-, meta- and para-substituent) contained in Sovol. Removal percentage for each congeners amounted to 59–100% in the bioaugmented systems. This study suggests that augmentation of PCB-contaminated soils with strain R. ruber P25 and Microbacterium sp. B51 is promising in PCB bioremediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.