Abstract
The potential for coupling bioaugmentation with phytoremediation to simultaneously treat and utilize treated palm oil mill effluent (TPOME) in animal feed production was determined from a reduction in phenolic compounds and color in soil leachates, as well as from an increased yield of pasture grass. Two phenol-degrading bacteria-Methylobacterium sp. NP3 and Acinetobacter sp. PK1-were inoculated into the Brachiaria humidicola rhizosphere before the application of TPOME. A pot study showed that the soil with both grass and inoculated bacteria had the highest dephenolization and decolorization efficiencies, with a maximum capability of removing 70% from 587 mg total phenolic compounds added and 73% from 4438 color units during ten TPOME application cycles. The results corresponded to increases in the number of phenol-degrading bacteria and the grass yield. In a field study, this treatment was able to remove 46% from 21,453 mg total phenolic compounds added, with a maximum color removal efficiency of 52% from 5105 color units, while the uninoculated plots removed about 24-39% and 29-46% of phenolic compounds and color, respectively. The lower treatment performance was probably due to the increased TPOME concentrations. Based on the amounts of phenolic compounds, protein, and crude fiber in the grass biomass, the inoculated TPOME-treated grass had a satisfactory nutritional quality and digestibility for use as animal feed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.