Abstract
The strategy of bioactivity-guided isolation is widely used to obtain active compounds as quickly as possible. Thus, the inhibitory effects on human erythroleukemia cells (HEL) were applied to guide the isolation of the anti-leukemic compounds from Aglaia abbreviata. As a result, 19 compounds (16 steroids, two phenol derivatives, and a rare C12 chain nor-sesquiterpenoid), including 13 new compounds, were isolated and identified based on spectroscopic data analysis, single-crystal X-ray diffraction data, and electronic circular dichroism (ECD) calculations. Among them, 9 steroids exhibited good selective anti-leukemic activity against HEL and K562 (human chronic myeloid leukemia cells) cells with IC50 values between 2.29 ± 0.18 μM and 19.58 ± 0.13 μM. Notably, all the active compounds had relatively lower toxicity on the normal human liver cell line (HL-7702). Furthermore, five compounds (1, 4, 8, 10, and 19) displayed good anti-inflammatory effects, with IC50 values between 7.15 ± 0.16 and 27.1 ± 0.37 μM. An α,β-unsaturated ketone or a 5,6Δ double bond was crucial for improving anti-leukemic effect from the structure–activity relationship analysis. The compound with the most potential, 14 was selected for the preliminary mechanistic study. Compound 14 can induce apoptosis and cause cell cycle arrest. The expression of the marker proteins, such as PARP and caspase 3, were notably effected by this compound, thus inducing apoptosis. In conclusion, our investigation implied that compound 14 may serve as a potential anti-leukemia agent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.