Abstract

The bulbs of Lilium brownii var. viridulum (LB) are commonly used as both traditional Chinese medicines and popular functional food for many centuries in China. Previous studies reported that the extract of lily bulbs exhibited anti-inflammatory activity both in vivo and in vitro, but its active components and associated molecular mechanisms remain elusive. In the present study, using bioassay-guided isolation method, two phenylpropenoid acylglycerols, 1-O-feruloyl-2-O-p-coumaroylglycerol (1) and 1,3-O-diferuloylglycerol (2), were obtained and identified from the chloroform fraction of LB. Both compounds 1 and 2 significantly decreased the production of nitrite oxide (NO) in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW264.7 cells in a dose-dependent manner with half maximal inhibitory concentration (IC50) values of 9.12 ± 0.72 μM and 12.01 ± 1.07 μM, respectively. They also inhibited the production of prostaglandin E2 (PGE2) and several other pro-inflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Furthermore, compounds 1 and 2 downregulated the protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). They also inhibited the nuclear translocation of nuclear factor-κB (NF-κB) p65 subunit and suppressed mitogen-activated protein kinases (MAPKs) pathway. Taken these data together, compounds 1 and 2 exhibited anti-inflammatory activities through acting on the NF-κB and MAPKs pathway. This research provides the first evidence on the major bioactive constituents and related molecular mechanisms of LB as an anti-inflammatory agent. Our findings also advanced the understanding of LB as a traditional herbal medicine for the prevention and treatment of inflammation.

Highlights

  • Lilium brownii var. viridulum Baker (Lily), belonging to the family Liliaceae, is widely distributed and planted in northern and eastern Asia

  • Inflammatory response and tissue damage are usually induced by inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β)) and related inflammatory mediators, including nitric oxide (NO) and prostaglandin E2 (PGE2) produced by inducible nitric oxide synthase and cyclooxygenase (COX-2), respectively [10,11,12]

  • Our results showed that compounds 1 and 2 effectively decreased the secretion of TNF-α, IL-1β and IL-6 in messenger RNA and protein levels dose-dependently, suggesting they had powerful anti-inflammatory activities

Read more

Summary

Introduction

Lilium brownii var. viridulum Baker (Lily), belonging to the family Liliaceae, is widely distributed and planted in northern and eastern Asia. Recent pharmacological studies suggested that the extract of lily bulbs possesses anti-inflammatory activity in both cells and cigarette smoke-exposed mouse models [4,5]. Inflammation is a physiological defense reaction of living organisms against harmful stimuli, such as damaged cells, pathogens, or irritants. It leads to the classical syndromes of heat, redness, swelling and hyperalgesia. Inflammatory response and tissue damage are usually induced by inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β)) and related inflammatory mediators, including nitric oxide (NO) and prostaglandin E2 (PGE2) produced by inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), respectively [10,11,12]. Suppressing the release of these inflammatory cytokines and mediators may control or relieve tissue injury during the inflammatory process

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call