Abstract

Municipal wastewater contains numerous chemicals and transformation products with highly diverse physiochemical properties and intrinsic toxicity; thus, it is imperative but challenging to identify major toxicants. Herein, toxicity identification evaluation (TIE) was applied to identify major toxicants in a typical municipal wastewater treatment plant (WWTP). Impacts of chemical properties on the removal of contaminants and toxicity at individual treatment stages were also examined. The WWTP influent caused 100% death of Daphnia magna and zebrafish embryos, and toxicity characterization suggested that organics, metals, and volatiles all contributed to the toxicity. Toxicity identification based on 189 target and approximately one-thousand suspect chemicals showed that toxicity contributions of organic contaminants, metals, and ammonia to D. magna were 77%, 4%, and 19%, respectively. Galaxolide, pyrene, phenanthrene, benzo[a]anthracene, fluoranthene, octinoxate, silver, and ammonia were identified as potential toxicants. Comparatively, the detected transformation products elicited lower toxicity than their respective parent contaminants. In contrast, the analyzed contaminants showed negligible contributions to the toxicity of zebrafish embryos. Removal efficiencies of these toxicants in WWTP were highly related to their hydrophobicity. Diverse transformation and removal efficiencies of contaminants in WWTPs may influence the chemical compositions in effluent and ultimately the risk to aquatic organisms in the receiving waterways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call