Abstract

The mimesis of biological mechanisms by artificial devices constitutes the modern, rapidly expanding, multidisciplinary biomimetics sector. In the broader bioinspiration perspective, however, bioarchitectures may perform independent functions without necessarily mimicking their biological generators. In this paper, we explore such Bioarchitectonic notions and demonstrate three-dimensional photonics by the exact replication of insect organs using ultra-porous silica aerogels. The subsequent conformal systolic transformation yields their miniaturized affine 'clones' having higher mass density and refractive index. Focusing on the paradigms of ommatidia, the compound eye of the hornet Vespa crabro flavofasciata and the microtrichia of the scarab Protaetia cuprea phoebe, we fabricate their aerogel replicas and derivative clones and investigate their photonic functionalities. Ultralight aerogel microlens arrays are proven to be functional photonic devices having a focal length f ~ 1000 μm and f-number f/30 in the visible spectrum. Stepwise systolic transformation yields denser and affine functional elements, ultimately fused silica clones, exhibiting strong focusing properties due to their very short focal length of f ~ 35 μm and f/3.5. The fabricated transparent aerogel and xerogel replicas of microtrichia demonstrate a remarkable optical waveguiding performance, delivering light to their sub-100 nm nanotips. Dense fused silica conical clones deliver light through sub-50 nm nanotips, enabling nanoscale light-matter interactions. Super-resolution bioarchitectonics offers new and alternative tools and promises novel developments and applications in nanophotonics and other nanotechnology sectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.