Abstract

Highly sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based methods have been developed and implemented for the quantitative determination of a number of peptides under evaluation in our Glucagon-Like Peptide-1 (GLP-1) discovery program for the treatment of diabetes. These peptides are GLP-1 receptor agonists. Due to the high potency, low dose, and low exposure of these peptides, LC/MS/MS-based methods with Lower Limits of Quantitation (LLOQs) (low picomolar range) were required to support discovery pharmacokinetic/ pharmacodynamic (PK/PD) studies. Compared with small molecules, many of these peptides posed significant bioanalytical challenges in the development of highly sensitive methods because of their parent signal splitting as a result of the formation of multiply charged states, the unfavorable fragmentation patterns for Selected Reaction Monitoring (SRM) transitions due to the generation of a large number of small mass product ions with relative low intensities, and adsorption issues observed during sample preparation. This paper details the strategies developed to maximize the sensitivity and improve LLOQs from aspects of mass spectrometry, chromatography, and sample preparation. A LLOQ of 10 picomolar was achieved for all of the investigated peptides using 100 μL of mouse plasma. This is a 100-fold improvement on LLOQs over generic LC/MS/MS-based methods when the same sample volume and the same mass spectrometer platform were used. The methods have been implemented in the support of discovery PK/PD studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.