Abstract

Abstract Cancer is considered a silent killer. The complexity of cancer makes it earn that title. So far there are only a few approaches to treat cancer. Among them, chemotherapy is considered the best approach. Many chemotherapeutical compounds are commercially available in the market. Among them, doxorubicin (DOX) and lapatinib (LAP) are considered blockbuster molecules. However, DOX suffers from poor bioavailability and exhibits cardiotoxicity. Interestingly, a fixed dose combination of DOX and LAP significantly decreases the cardiotoxic effect of DOX. To enhance the oral bioavailability of DOX and to avail the synergistic effect of LAP, many formulations have been made. To quantify both compounds in any formulation or biological matrix, an Liquid chromatography-Mass Spectrometry (LC-MS) method is required. In this present study, a simple and rapid Ultra High-Performance Liquid Chromatography - Heated Electron Spray Ionization - Mass Spectrometry (UHPLC-HESI-MS) bioanalytical method was developed. The developed method was validated as per the regulatory guidelines. The validated bioanalytical method had a lower limit of quantification of 0.75 ng. A simple protein precipitation technique was optimized to extract the compounds from the rat plasma. All the validation parameters were found to be within the limits as per the regulatory guidelines. A novel and rapid analytical method was successfully developed and validated. This developed method can be used to quantify the DOX and LAP in any formulation and biological matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.