Abstract

Surface enhanced Raman scattering (SERS) has become a powerful technique for trace analysis of biomolecules. The use of SERS-tags has evolved into clinical diagnostics, the enhancement of the intrinsic signal of biomolecules on SERS active materials shows tremendous promise for the analysis of biomolecules and potential biomedical assays. The detection of the de novo signal from a wide range of biomolecules has been reported to date. In this review, we examine different classes of biomolecules for the signals observed and experimental details that enable their detection. In particular, we survey nucleic acids, amino acids, peptides, proteins, metabolites, and pathogens. The signals observed show that the interaction of the biomolecule with the enhancing nanostructure has a significant influence on the observed spectrum. Additional experiments demonstrate that internal standards can correct for intensity fluctuations and provide quantitative analysis. Experimental methods that control the interaction at the surface are providing for reproducible SERS signals. Results suggest that combining advances in methodology with the development of libraries for SERS spectra may enable the characterization of biomolecules complementary to other existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.