Abstract

The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers.

Highlights

  • Bioaerosols are a potential source of airborne biological agents associated with a wide range of public health problems [1]

  • This study explored the expression change of remodeling genes in human airway epithelial cells exposed to the conditioned medium of field bioaerosol samples from the composting hall of a food composting plant and A. fumigatus standard strain (104 condia), and compared the obtained data with that of a control group

  • This study observed that the expression of remodeling genes, including transforming growth factor (TGF)-β, p21WAF1/CIP1 and epidermal growth factor receptor (EGFR) was upregulated after exposure to field-sampled bioaerosols

Read more

Summary

Introduction

Bioaerosols are a potential source of airborne biological agents associated with a wide range of public health problems [1]. Exposure to bioaerosol components (fungi, bacteria, mycotoxins, and endotoxins) in the working environment has emerged as a dominant health concern in some occupational settings such as wastewater treatment and composting facilities. There are concerns regarding the potential impact on health caused by airborne bioaerosol components such as endotoxins, bacteria (mesophiles and thermophiles), and fungi during the composting process (piling up, agitation, and fermentation). A cohort study reported that workers exposed to organic dust from composting plants had a higher prevalence of mucosal membrane irritation of the eyes and upper airways [8]. Muller et al [9] reported that short-term exposure of healthy young patients to organic dust in composting plants had a mild but measurable effect (increased blood neutrophilia) in eliciting an acute systemic alteration. The increase in allergic reactions was positively correlated to the composition of the dust and the duration of exposure [10,11,12,13,14]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.