Abstract
Fine dust and bioaerosols are significant public health concerns, showing the importance of protective measures. In this study, natural-based trimethyl chitosan, permanently burdened with a positive charge, was successfully distributed on the surface of melt-blown polypropylene sheets through a metal rod coating process. This surface modification was confirmed through scanning electron microscopy and X-ray photoelectron spectroscopy, indicating the surface adsorption of trimethyl chitosan without chemical bonding. Modifying polypropylene mask filters yielded a positive surface zeta potential for 10–20 g/m2 coat weight, increasing the filtration efficiency to 55–94 % in a standard particle filtration test using paraffin oil as a liquid aerosol. The filtration efficiency remained higher than conventional non-treated mask filters even after the humidification of sheets. In addition, the filtration test against fine dust particles, such as titanium dioxide, was performed with trimethyl chitosan-modified mask filters that captured up to 100–800 µg/m3 titanium oxide particle concentrations, showing better filtration than conventional mask filters in high fine dust events. Trimethyl chitosan-modified mask filters also exhibited potent inhibition, bactericidal, and antiviral effects against HCoV-OC43, reducing the virus infection rate by 93.69 %. Thus, trimethyl chitosan could be applied to several existing filter membranes to protect against particulate matter and dangerous airborne pathogens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.