Abstract

Oral administration of insulin is hampered by the lack of carriers that can efficiently achieve high encapsulation, avoid gastric degradation, overcome mucosal barriers, and prolong the hypoglycemic effect. Chitosan (CS)-coated insulin-loaded cationic liposomes have been developed and optimized for improved oral delivery. Liposomes were prepared cationic to improve insulin encapsulation. CS was selected as a mucoadhesive coat to prolong the system's residence and absorption. The performance of CS-coated liposomes compared with uncoated liposomes was examined in vitro, ex vivo, and in vivo in streptozotocin-induced diabetic mice. Free uncoated liposomes showed high positive zeta potential of +58.8 ± 2.2 mV that reduced (+29.9 ± 1.4 mV) after insulin encapsulation, confirming the obtained high entrapment efficiency of 87.5 ± 0.6%. CS-coated liposomes showed nanosize of 439.0 ± 12.3 nm and zeta potential of +60.5 ± 1.9 mV. In vitro insulin release was limited to 18.9 ± 0.35% in simulated gastric fluid, whereas in simulated intestinal fluid, 73.33 ± 0.68% was released after 48 h from CS-coated liposomes. Ex vivo intestinal mucoadhesion showed increased tissue residence of CS-coated liposomes compared with uncoated liposomes. A striking reduction in the glucose level was observed 1 h after oral administration of CS-coated liposomes and maintained up to 8 h (p <0.01 vs. insulin solution or uncoated liposomes) within the normal value 129.29 ± 3.15 mg/dL. In conclusion, CS-coated insulin-loaded cationic liposomes improved loading efficiency with promising prolonged pharmacological effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call