Abstract

Enhancing drug residence duration within the stomach offers distinct advantages for both localized and systemic effects. Numerous strategies have been proposed to extend drug residence time, with mucoadhesive polymers being a notable avenue. In this context, hydroxypropyl methylcellulose E5 has been employed as both a binding agent for granulating contrast metal powder and a mucoadhesive polymer, spanning various concentrations. The in vitro bioadhesion strength of the formulated tablets was gauged against the stomach lining of rabbits, for the quantification of bioadhesive forces. The temporal aspect of bioadhesion was evaluated through two approaches: one centered on gastric fluid dynamics and another proffered by the researchers, focusing on gastric wall kinetics. The results divulged a decline in bioadhesion force concomitant with high polymer concentrations. Histological examination of stained stomach sections revealed mucosal perturbations within the rabbit stomach. These disruptions exhibited an escalating trend in conjunction with elevated polymer concentrations, culminating in extensive disturbance at a 7.5% polymer concentration. The outcomes unveiled a direct relationship between polymer concentration increments and extended contact time. Subsequent radiological tracking of contrast metal behavior within a mature human stomach indicated a residence time of 6 h due to the entrapment of displaced components at disparate locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call