Abstract

Licorice (Glycyrrhiza glabra L.) is one of the most widely used plants worldwide for its various pharmacological activities. The aim of this study was to isolate the potential cytotoxic secondary metabolites from the MeOH extract prepared from the roots of Glycyrrhiza glabra through bioactivity-guided isolation procedure and to elucidate their mechanisms of action. The crude MeOH extract as well as CHCl3 and EtOAc subextracts significantly inhibited cell proliferation on hepatocelullar (Huh7), breast (MCF7) and colorectal (HCT116) cancer cell lines with IC50 values in the range of 5.6 to 33.6 μg/mL. Chromatographic seperations of the CHCl3 and EtOAc subextracts yielded 13 secondary metabolites. Structures were characterized based on NMR and MS data. Amongst isolates, glabridin (1), 4′-O-methylglabridin (2), β-amyrin (3), kanzonol U (4), glabrene (7) and tetrahydroxymethoxychalcone (10) were established to be responsible for in vitro cytotoxicity of G. glabra, exerting the best activity particularly against Huh7 cells. Further mechanistic studies demonstrated that 2 and 7 induced caspase-dependent apoptosis by increasing cytochrome C release and subsequently cleaved caspase-9 level in Huh7 cells. Moreover, both compounds decreased pRb and p21 levels and thus induced the accumulation of Huh-7 cells in subG1 and G2/M phases. Compound 10 which displayed the most potent activity in Hoechst staining and cell cycle assays through G2/M arrest, caused cell death by apoptosis in Huh7 cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.