Abstract

The d-/l-peptide gramicidin A (gA) is well known as a pivotal ion channel model and shows a broad spectrum of bioactivities such as antibiosis, antimalarial activity, as well as hemolysis. We applied inter-chain disulfide bonds to constrain the conformational freedom of gA into parallel and antiparallel dimeric topologies. Albeit the constructs were not found to be monoconformational, CD- and IR-spectroscopic studies suggested that this strategy indeed restricted the conformational space of the d-/l-peptide construct, and that β-helical secondary structures prevail. Correlative testing of gA dimers in antimicrobial, antimalarial, and ion conduction assays suggested that the tail-to-tail antiparallel single stranded β6.3 helix dominantly mediates the bioactivity of gA. Other conformers are unlikely to contribute to these activities. From these investigations, only weakly ion conducting gA dimers were identified that retained nM antimalarial activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call