Abstract

BackgroundCupressus macrocarpa Hartw and Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson, widely grown in many subtropical areas, are used for commercial purposes, such as in perfumery, cosmetics, and room fresheners. Their potential as a source of antimicrobial compounds may be useful in different applications.MethodsThe chemical composition of essential oils (EOs) from C. macrocarpa branchlets and C. citriodora leaves was analyzed by using gas chromatography–mass spectrometry (GC/MS). Antibacterial and antifungal activities were assessed by the micro-dilution method to determine the minimum inhibitory concentrations (MICs), and minimum fungicidal concentrations (MFCs), and minimum bactericidal concentrations (MBCs). Further, the antioxidant capacity of the EOs was determined via 2,2′-diphenypicrylhydrazyl (DPPH) and β-carotene-linoleic acid assays.ResultsTerpinen-4-ol (23.7%), α-phellandrene (19.2%), α-citronellol (17.3%), and citronellal were the major constituents of EO from C. macrocarpa branchlets, and α-citronellal (56%), α-citronellol (14.7%), citronellol acetate (12.3%), isopulegol, and eucalyptol were the primary constituents of EO from C. citriodora leaves. Antibacterial activity with MIC values of EO from C. citriodora leaves was ranged from 0.06 mg/mL to 0.20 mg/mL, and MBC from 0.12 mg/mL against E. coli to 0.41 mg/mL. EO from C. macrocarpa branchlets showed less activity against bacterial strains. The MIC values against tested fungi of the EO from C. citriodora ranged from 0.11 to 0.52 mg/mL while for EO from C. macrocarpa from 0.29 to 3.21 mg/mL. The MIC and MFC values of EOs against P. funiculosum were lower than those obtained from Ketoconazole (KTZ) (0.20; 0.45; 0.29 and 0.53 mg/mL, respectively, vs 0.21 and 0.41 mg/mL. Antioxidant activity of the EO from C. citriodora was higher than that of the positive control but lower than that of the standard butylhydroxytoluene (BHT) (IC50 = 5.1 ± 0.1 μg/mL).ConclusionThe results indicate that the EO from Egyptian trees such as C. citriodora leaves may possesses strong bactericidal and fungicidal activities and can be used as an agrochemical for controlling plant pathogens and in human disease management which will add crop additive value.

Highlights

  • Cupressus macrocarpa Hartw and Corymbia citriodora (Hook.) K.D

  • Seventeen compounds were identified in the Essential oil (EO) of C. citriodora leaves (Table 2)

  • Antibacterial activity The minimum inhibitory concentration (MIC) values of EO from C. citriodora leaves ranged from 0.06 mg/mL against E. coli to 0.20 mg/mL against S. aureus, and those values were lower than the MIC values of streptomycin (Table 2)

Read more

Summary

Introduction

Cupressus macrocarpa Hartw and Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson, widely grown in many subtropical areas, are used for commercial purposes, such as in perfumery, cosmetics, and room fresheners. Widely grown in many subtropical areas, are used for commercial purposes, such as in perfumery, cosmetics, and room fresheners Their potential as a source of antimicrobial compounds may be useful in different applications. EOs are moderate to strong antioxidants and preservatives used in food processing. They are used as antimicrobial agents in food supplement production and the pharmaceutical industry [2, 7, 8]. Fahed et al [19] reported that the EOs of C. macrocarpa has strong activity against specific dermal fungi

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call