Abstract
Trichoderma fungal species are universal soil residents that are also isolated from decaying wood, vegetables, infected mushroom and immunocompromised patients. Trichoderma species usually biosynthesize a plethora of secondary metabolites. In an attempt to explore endophytic fungi from healthy foliar tissues of the plant family Cuppressaceae, we explored Cupressus arizonica, C. sempervirens var. cereiformis, C. sempervirens var. fastigiata, C. sempervirens var. horizontalis, Juniperus excelsa, Juniperus sp. and Thuja orientalis plants and recovered several endophytic Trichoderma fungal strains from Trichoderma atroviride and Trichoderma koningii species. We found that the host plant species and biogeographical location of sampling affected the biodiversity and bioactivity of endophytic Trichoderma species. Furthermore, the bioactivity of Trichoderma isolates and the methanol extracts of their intra- and extra-cellular metabolites were assessed against a panel of pathogenic fungi and bacteria. Fungal growth inhibition, conidial cytotoxicity, minimum inhibitory concentration and minimum bactericidal concentration were evaluated and analyzed by statistical methods. Our data showed that both intra- and extracellular secondary metabolites from all endophytic isolates had significant cytotoxic and antifungal effects against the model target fungus Pyricularia oryzae and the cypress fungal phytopathogens Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. Further research indicated their significant antimicrobial bioactivity against the model phytopathogenic bacteria Pseudomonas syringae, Erwinia amylovora and Bacillus sp., as well. Altogether, the above findings show for the first time the presence of T. atroviride and T. koningii as endophytic fungi in Cupressaceae plants and more importantly, the Trichoderma isolates demonstrate significant bioactivity that could be used in future for agrochemical/drug discovery and pathogen biocontrol.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.