Abstract

A 45S5 bioactive glass (nominal composition: 46.1 mol.% SiO 2, 2.6 mol.% P 2O 5, 26.9 mol.% CaO, 24.4 mol.% Na 2O) was electrothermally poled by applying voltages up to 750 V for 45 min at 200 °C, and the thermally stimulated depolarization currents (TSDCs) were recorded. Changes in chemical composition and electrical properties after poling were investigated by TSDC measurements, impedance spectroscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). The poling led to the formation of interfacial layers underneath the surface in contact with the electrodes. Under the positive electrode, the layer was characterized by Na + ion depletion and by a negative charge density, and the layer was more resistive than the bulk. The influence of poling on the bioactivity was studied by immersion of samples in simulated body fluid (SBF) with subsequent cross-sectional SEM/EDX and X-ray diffraction analysis. It was found that poling leads to morphological changes in the silica-rich layer and to changes in the growth rate of amorphous calcium phosphate and bone-like apatite on the glass surface. The bone-like apatite layer under the positive electrode was slightly thicker than that under the negative electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.