Abstract
In this study, a bone-like apatite layer was formed on a Ni-free Ti-based metallic glass. A two-step treatment method, i.e., hydrothermal-electrochemical treatment followed by pre-calcification treatment, was developed to prepare a bioactive surface on the Ti-based metallic glass. The results reveal that the combination of electrochemical-hydrothermal and pre-calcification treatments can accelerate nucleation and improve growth rate of apatite on Ti-based metallic glass in simulated body fluid (Hanks' solution). The reasons why the two-step treatment accelerates the nucleation and growth of apatite were also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.