Abstract
An alcoholic extract of Artemisia dracunculus L (PMI 5011) has been shown to decrease glucose and improve insulin levels in animal models, suggesting an ability to enhance insulin sensitivity. We sought to assess the cellular mechanism by which this botanical affects carbohydrate metabolism in primary human skeletal muscle culture. We measured basal and insulin-stimulated glucose uptake, glycogen accumulation, phosphoinositide 3 (PI-3) kinase activity, and Akt phosphorylation in primary skeletal muscle culture from subjects with type 2 diabetes mellitus incubated with or without various concentrations of PMI 5011. We also analyzed the abundance of insulin receptor signaling proteins, for example, IRS-1, IRS-2, and PI-3 kinase. Glucose uptake was significantly increased in the presence of increasing concentrations of PMI 5011. In addition, glycogen accumulation, observed to be decreased with increasing free fatty acid levels, was partially restored with PMI 5011. PMI 5011 treatment did not appear to significantly affect protein abundance for IRS-1, IRS-2, PI-3 kinase, Akt, insulin receptor, or Glut-4. However, PMI 5011 significantly decreased levels of a specific protein tyrosine phosphatase, that is, PTP1B. Time course studies confirmed that protein abundance of PTP1B decreases in the presence of PMI 5011. The cellular mechanism of action to explain the effects by which an alcoholic extract of A dracunculus L improves carbohydrate metabolism on a clinical level may be secondary to enhancing insulin receptor signaling and modulating levels of a specific protein tyrosine phosphatase, that is, PTP1B.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.