Abstract

Phytopathogenic fungi, causing significant economic and production losses, are becoming a serious threat to global food security. Due to an increase in fungal resistance and the hazardous effects of chemical fungicides to human and environmental health, scientists are now engaged to explore alternate non-chemical and ecofriendly management strategies. The use of biocontrol agents and their secondary metabolites (SMs) is one of the potential approaches used today. Trichoderma spp. are well known biocontrol agents used globally. Many Trichoderma species are the most prominent producers of SMs with antimicrobial activity against phytopathogenic fungi. Detailed information about these secondary metabolites, when grouped together, enhances the understanding of their efficient utilization and further exploration of new bioactive compounds for the management of plant pathogenic fungi. The current literature provides the information about SMs of Trichoderma spp. in a different context. In this review, we summarize and group different antifungal SMs of Trichoderma spp. against phytopathogenic fungi along with a comprehensive overview of some aspects related to their chemistry and biosynthesis. Moreover, a brief overview of the biosynthesis pathway, action mechanism, and different approaches for the analysis of SMs and the factors affecting the regulation of SMs in Trichoderma is also discussed.

Highlights

  • Plant pathogens cause significant losses, which have obstructed efforts to increase agricultural production

  • We summarize and group different antifungal secondary metabolites (SMs) of Trichoderma spp. against phytopathogenic fungi, along with a comprehensive overview of some aspects related to their chemistry and biosynthesis

  • High genetic flexibility and broad-spectrum lifecycles allow the pathogenic fungi to develop fungicide resistance and invade new hosts

Read more

Summary

Introduction

Plant pathogens cause significant losses, which have obstructed efforts to increase agricultural production. Several management strategies have been utilized for the control of fungal plant pathogens, including the use of chemical fungicides, the breeding of disease resistance varieties, and several other cultural practices. Several Trichoderma spp. exhibit antifungal activities against phytopathogenic fungi [7], in which different groups of SMs, such as terpenes, pyrones, gliotoxin, gliovirin, and peptaibols may be involved [8]. Comprehensive information about these SMs regarding their antifungal role against phytopathogenic fungi, when grouped together, will enhance the understanding of their efficient utilization and further exploration of new antifungal bioactive metabolites for the management of plant pathogenic fungi.

Epipolythiodioxopiperazines
Peptaibols
Pyrones
Butenolides
Koninginins
2.10. Lactones
2.12. Others
Antifungal Mechanisms of Trichoderma SMs
Findings
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.