Abstract
The effectiveness of commercial bone adhesives is known to be hampered by the weak efficacy of cell ingrowth. The strategy of macropore-forming, especially bioactive macropores, holds considerable promise to circumvent this problem, thereby promoting fracture healing. Herein, a class of bioactive glass-involved macropore-embedded bone adhesives is developed, which is capable of facilitating the migration of bone-derived mesenchymal stromal cells into the adhesive layer and differentiation into osteocytes. The integration of bioactive glass-particle-encapsulated porogens in the bone adhesives is key to this approach. A robust instant bonding on the bone adhesive and a high efficiency of bone regeneration on a mouse skull are observed, both of which are vital for clinical applications and personalized surgical procedures. This work represents a general strategy to design biomaterials with high cell-ingrowth efficacy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.