Abstract
ABSTRACT Introduction: Mitochondria are essential for generating cellular energy and are significant in the pathogenesis of obesity. Peptide PDBSN has been demonstrated to inhibit the adipogenic differentiation of adipocytes in vitro and improves metabolic homoeostasis in vivo. Therefore, in this study, we further investigated the effects of PDBSN on the morphology, synthesis, and function of adipocyte mitochondria. Methods: Human visceral and subcutaneous primary preadipocytes (HPA-v and HPA-s) were cultured into mature adipocytes. Intracellular triglyceride content was assessed using oil-red O staining and tissue triglyceride determination. Gene and protein levels associated with mitochondrial synthesis were detected using real-time quantitative polymerase chain reaction and western blotting. Mitochondrial membrane potentials and ROS were detected using fluorescent indicators. Morphological changes were observed by electron microscopy. Results: PDBSN significantly increased mitochondrial membrane potential (MMP), while decreasing intracellular triglyceride (TG) and intracellular reactive oxygen species (ROS) levels. On the other hand, the transcription and protein levels of genetic marker genes PGC1-α and MTFA were significantly up-regulated after PDBSN administration. Further studies showed that transcriptional and protein levels of mitochondrial fusion and fission genetic markers MFN1, MFN2, NRF1, and DRP1 increased. Conclusion: PDBSN significantly reduces intracellular TG and ROS levels and increases MMP. The maximum respiratory capacity in adults significantly increases after PDBSN administration, and ROS levels are significantly reduced. This suggests that PDBSN improves mitochondrial function to some extent, which not only provides an essential basis for the pathophysiology of obesity but also provides insights for the development of new drugs to treat obesity and metabolic diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.