Abstract

Hydroxyapatite (HA) filled poly(methyl methacrylate)/poly(hydroxyethyl methacrylate) (PMMA/PHEMA) blends were prepared by reactive suspension method: HA was synthesized by co-precipitation process directly within a HEMA solution and the so-obtained suspension was polymerized in the presence of PMMA. HA particles were obtained in form of nanorods with a length of 50–200 nm and a diameter of 10–30 nm. A significant increase in glass transition temperature was observed in the nanocomposites with respect to the unfilled polymer blends. Dynamic-mechanical thermal analysis showed a significant increase in the storage modulus in the nanocomposites measured in the rubbery region. This increase was unpredicted by Mooney’s predictive equation and was attributed to the presence of cross-linking points due to the in situ generated HA particles. An increase in the elastic modulus was also observed at room temperature in compression and three-point bending tests. The presence of HA in the polymer blends resulted in an important decrease in the water sorption values. The bioactivity of the nanocomposites was verified by the precipitation of HA layer on the surface after soaking in simulated body fluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.