Abstract

Combination of bioceramics with polymers to fabricate nanofibrous scaffolds holds enormous potential for bone tissue regeneration. In this study, we aim to incorporate HAp nanoparticles in trace doping amount in PVA-chitosan nanofiber matrix to fabricate PVA-chitosan composite nanofibers with improved performance for application as a bone tissue regeneration material. The diameter of the fabricated composite nanofibrous mat is estimated as 300 ± 121 nm. Beads free nanofibers mat with uniform morphology was ascertained for all sample groups by scanning electron microscopy (SEM) and the overall composition was assessed using Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDX). SEM images showed a homogeneous distribution of HAp nanoparticles in the composite nanofibers matrix. Further, X-ray diffraction (XRD) was performed to determine the crystallinity of the fabricated scaffolds. Swelling behavior and hydrolytic degradation of nanofibrous mats were subsequently evaluated by immersing in PBS buffer at pH 7.4 at physiological temperature (37 °C). The biocompatibility study of nanofiber scaffolds was performed with MC3T3 cells. Significantly higher cellular viability was observed on HAp nanoparticles incorporated composite nanofibrous scaffold surface after 7 days of culture in comparison to scaffolds without HAp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.