Abstract

Following primary infection in humans, the human cytomegalovirus (HCMV) persists in a latent state throughout the host’s lifetime despite a strong and efficient immune response. If the host experiences some form of immune dysregulation, such as immunosuppression or immunodeficiency, HCMV reactivates, thereby emerging from latency. Thus, in the absence of effective functional immune responses, as occurs in immunocompromised or immunoimmature individuals, both HCMV primary infections and reactivations from latency can cause significant morbidity and mortality. However, even in immunocompetent hosts, HCMV represents a relevant risk factor for the development of several chronic inflammatory diseases and certain forms of neoplasia. HCMV infection may shift between the lytic and latent state, regulated by a delicate and intricate balance between virus-mediated immunomodulation and host immune defenses. Indeed, HCMV is a master in manipulating innate and adaptive host defense pathways, and a large portion of its genome is devoted to encoding immunomodulatory proteins; such proteins may thus represent important virulence determinants. However, the pathogenesis of HCMV-related diseases is strengthened by the activities of bioactive molecules, of both viral and cellular origin, that are secreted from infected cells and collectively named as the secretome. Here, we review the state of knowledge on the composition and functions of HCMV-derived secretomes. In lytic infections of fibroblasts and different types of endothelial cells, the majority of HCMV-induced secreted proteins act in a paracrine fashion to stimulate the generation of an inflammatory microenvironment around infected cells; this may lead to vascular inflammation and angiogenesis that, in turn, foster HCMV replication and its dissemination through host tissues. Conversely, the HCMV secretome derived from latently infected hematopoietic progenitor cells induces an immunosuppressive extracellular environment that interferes with immune recognition and elimination of latently infected cells, thereby promoting viral persistence. Characterization of the composition and biological activities of HCMV secretomes from different types of infected cells will lay the foundation for future advances in our knowledge about the pathogenesis HCMV diseases and may provide targets for the development of novel antiviral intervention strategies.

Highlights

  • Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy

  • This experimental model involves the infection of CD34+ hematopoietic progenitor cells cultivated in the absence of stimuli that may promote their differentiation into mature dendritic cells (DCs) or macrophages, that are fully permissive to lytic human cytomegalovirus (HCMV) infection

  • We have examined what is known about the bioactive molecules, of both viral and cellular origin, secreted from HCMV-infected cells

Read more

Summary

Bioactive Molecules Released From Cells Infected with the Human Cytomegalovirus

HCMV infection may shift between the lytic and latent state, regulated by a delicate and intricate balance between virus-mediated immunomodulation and host immune defenses. The pathogenesis of HCMV-related diseases is strengthened by the activities of bioactive molecules, of both viral and cellular origin, that are secreted from infected cells and collectively named as the secretome. We review the state of knowledge on the composition and functions of HCMV-derived secretomes. The HCMV secretome derived from latently infected hematopoietic progenitor cells induces an immunosuppressive extracellular environment that interferes with immune recognition and elimination of latently infected cells, thereby promoting viral persistence. Characterization of the composition and biological activities of HCMV secretomes from different types of infected cells will lay the foundation for future advances in our knowledge about the pathogenesis HCMV diseases and may provide targets for the development of novel antiviral intervention strategies

THE HUMAN CYTOMEGALOVIRUS
MODULATION OF HOST IMMUNE RESPONSES BY HCMV
Inhibitor of the matrix metalloproteinases
Growth factor Receptor Enzyme
Secreted HCMV Proteins
Findings
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.