Abstract

Tragia involucrata Linn. (T. involucrata) belongs to the family of Euphorbiaceae found in the subtropical regions. Traditionally, the plant parts are used to treat inflammation, wounds and skin infection by people of the Western Ghats, India. Few studies on the acute anti-inflammatory activity of T. involucrata extracts were reported earlier. The present study aims to identify the bioactive fraction of T. involucrata and to evaluate its mechanism in Complete Freund's Adjuvant-induced arthritic rat model. The leaf extract was highly effective among the methanolic leaf and root extracts. The hexane (HF) and a methanolic fraction (MF) of the leaf extract of T involucrata were further identified as a bioactive fraction evaluated through protein denaturation assay. The HF and MF were further studied for their anti-inflammatory potential in a chronic inflammatory model, and their mechanism of action was explored further. Arthritis was induced by administering 0.1ml of CFA intradermally. The treatment was started the next day with HF (100 and 250mg/kg/day) and MF (100 and 250mg/kg/day), while the HF and MF alone group served as the drug control, Indomethacin-treated group served as the positive control. On the 25th day, the animals were euthanized, and their body weight, paw thickness, arthritic score, spleen and thymus weight, haematological parameters, biochemical parameters, radiographs and histopathology were analyzed. Results showed that the MF-treated animals maintained dry weight, reduced paw thickness, arthritic scores, and haematological and biological parameters compared to the HF-treated and CFA-induced arthritic rats. Both radiological and histopathological analyses of the joints revealed that the MF-treated groups restored bone architecture without any erosion and normal tissue architecture with nil signs of active inflammation. Western blot analysis revealed that MF has effectively inhibited the protein expression levels of MMP-3, MMP-9, and NF-κB in the synovial tissues compared to that of CFA-induced arthritic rats. Besides, HPLC analysis revealed the presence of flavonoids, including gallic acid, rutin and Quercetin, in the MF of T. involucrata, which had shown to have potent anti-inflammatory potential. Thus, it can be emphasized that T. involucrata could be a potential therapeutic candidate for treating inflammatory diseases, which needs further experimental studies to confirm its safety and efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call