Abstract

AbstractA class of bioactive, stimuli‐responsive co‐joined interpenetrating networks of inherently conductive polymers and highly hydrated hydrogels are being developed for implantable biodevice interfaces and for electric field induced release of elutable drugs. A novel microfabricated multidisc electrode array biotransducer intended for trauma management has been coated with poly(HEMA)‐polypyrrole and characterized by cyclic voltammetry and chronoamperometry using ferrocene monocarboxylic acid (FcCOOH) as a probe molecule. Electrodeposition of polypyrrole (700 mV vs. Ag/AgCl) to 100 mC/cm2 onto the hydrogel coated microdisc electrode array resulted in large and unstable background currents relative to uncoated electrodes. Overoxidation of polypyrrole (0–1.2 V vs. Ag/AgCl, 20 cylces, 100 mV/s) eliminates background current. Dose‐response curves with FcCOOH showed that the transducer has good reproducibility with molecules of facile electrochemical properties. Polypyrrole provides interference screening of endogenous interferents in biosensor applications with a 12:1 rejection ratio. GOx was immobilized via electropolymerization of polypyrrole into hydrogel coated MDEA 5037s to yield biotransducers with sensitivity of 0.045 µA mM−1 cm−2. Changes to improve biotransducer sensitivity are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.