Abstract

Every year, the viticulture activity generates considerable amounts of underused lignocellulosic residues as grape cane, which are generally composted or burned despite their potential value as a source of bioactive compounds. Determination of their phytochemical composition and total antioxidant capacity (TAC) may be a useful way of exploiting different high-added value applications. Twenty-one phenolic compounds (PC) and two carotenoids (Car) were quantified by high performance-liquid chromatography-diode array detection in eight grape varieties from different locations in Mendoza, Argentina. The maximum concentrations corresponded to the stilbene ϵ-viniferin [10 552 μg g-1 dry weight (DW)], followed by the flavanols (+)-catechin (3718 μg g-1 DW) and (-)-epicatechin (2486 μg g-1 DW). In addition, lutein and β-carotene were quantified at levels ranging between 350 and 2400 ng g-1 DW. The TAC of the extracts was assessed by oxygen radical absorbance capacity, 2,20-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid and 1,1-diphenyl-2-picrylhydrazyl assays, with a good correlation between TAC and total PC for each sample (r ≥ 0.82). Samples of cv. Malbec, the most representative variety of Argentina's winemaking industry, presented high contents of PC, particularly ϵ-viniferin, (+)-catechin and (-)-epicatechin. Quercetin-3-galactoside, OH-tyrosol and Car were reported for the first time in grape canes of the eight varieties. The results add to the existing knowledge related to this inexpensive source of high-value bioactive compounds, which could be used as functional ingredients. © 2019 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call